


NASA Technical Memorandum 4579

Thermocryogenic Buckling and
Stress Analyses of a Partially
Filled Cryogenic Tank Subjected
to Cylindrical Strip Heating

William L. Ko

Dryden Flight Research Center

Edwards, California

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical

Information Program

1994



CONTENTS

ABSTRACT

NOMENCLATURE

INTRODUCTION

DESCRIPTION OF PROBLEM

FINITE ELEMENT MODELS

THERMOCRYOGENIC BUCKLING ANALYSIS

THERMOCRYOGENIC AND MECHANICAL STRESS ANALYSES

NUMERICAL RESULTS

1

1

2

3

4

4

5

6

Thermocryogenic Buckling ......................................................... 6
Induced Stresses and Deformations ................................................... 8

Thermocryogenic Loading ........................................................ 8

Cryogenic Liquid Pressure Loading ................................................ 10

Internal Pressure Loading ........................................................ 10

Tank-Wall Inertia Loading ....................................................... 11

High-Stress Domains ........................................................... 12

CONCLUDING REMARKS 12

FIGURES 14

APPENDIX 63

REFERENCES 66

PAC.d[ IN..AIMK NOT FILMED

iii



ABSTRACT

Thermocryogenic buckling and stress analyses were conducted on a horizontally oriented cryogenic

tank using the finite element method. The tank is a finite-length circular cylindrical shell with its two ends

capped with hemispherical shells. The tank is subjected to cylindrical strip heating in the region above the

liquid-cryogen fill level and to cryogenic cooling below the fill level (i.e., under thermocryogenic loading).

The effects of cryogen fill level on the buckling temperature and thermocryogenic stress field were inves-

tigated in detail. Both the buckling temperature and stress magnitudes were relatively insensitive to the

cryogen fill level. The buckling temperature, however, was quite sensitive to the radius-to-thickness ratio.

A mechanical stress analysis of the tank also was conducted when the tank was under (1) cryogen liquid

pressure loading, (2) internal pressure loading and (3) tank-wall inertia loading. Deformed shapes of the

cryogenic tanks under different loading conditions were shown, and high-stress domains were mapped on

the tank wall for the strain-gage installations. The accuracies of solutions from different finite element

models were compared.
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radius of circular cylindrical segment, or radius of hemispherical bulkheads of cryogenic

tank, in.

temperature, °F

thickness of cryogenic tank, in.

displacement vector

global rectangular coordinates

local rectangular coordinates

coefficient of thermal expansion of tank-wall material, in/in-°F

radial displacement of circular cylinder, in.



AR
S

AT

AT
cr

radial displacement of sphere, in.

temperature differential, °F

critical buckling temperature, °F

A (ATcr)

0

1

v

P

PH

0
Z

0 0

_Oz

difference in AT r, °F

polar angle, deg

eigenvalue of the i-th buckling mode

Poisson ratio of tank material

density of tank-wall material, lb/in 3

density of liquid hydrogen, lb/in 3

stress in z-direction, lb/in 2

stress in 0-direction, lb/in 2

stress in _-direction, lb/in 2

shear stress, lb/in /

meridional angle, deg

INTRODUCTION

A finite-length circular cylindrical shell with its two ends capped with hemispherical shells or hemi-

spheroidal shells of revolution is a popular geometry for pressure vessels. These shapes of vessels also are

used commonly as cryogenic fuel tanks for liquid-propellant rockets. A pressure vessel is loaded under

uniform internal pressure, and the stress field generated in the tank wall is axisymmetric and can be cal-

culated relatively easily (ref. 1). When used as a cryogenic fuel tank for a liquid-propellant rocket motor

for vertical lift-off, the tank axis is oriented vertically; therefore, the stress field generated in the tank wall

is also axisymmetric, but the induced stresses vary with axial location (governed by the fill level and the

end effect). When used as a cryogenic fuel tank for a hypersonic flight vehicle for horizontal takeoff (e.g.,

space plane for single-stage horizontal takeoff to space), the insulated tank is carried inside the fuselage

of the vehicle (or could form part of the fuselage of the vehicle), and its axis is oriented horizontally.

During one mission, the liquid-cryogen fill level starts from empty to full (at takeoff), then gradually

comes down as the fuel is consumed during flight, and finally reaches empty at the end of the mission.

Thus, the tank wall goes through a history of being cooled longitudinally below the liquid-cryogen fill lev-

el (which is constantly decreasing during the mission), and also being heated longitudinally (as the result

of aerodynamic heating, even through insulations) in the region above the fill level. During a flight, the

tank is subjected to the fill-level-dependent thermocryogenic loading, and the thermocryogenic stress field

induced in the tank wall is no longer axisymmetric. The stress in the tank wall then changes with both the

fill level and the axial location because of the end effect, which is magnified by the shortness of the tank.

Because of simultaneous heating and cryogenic cooling (changing with fill level) in different regions of

the horizontally oriented cryogenic tank, thermocryogenic buckling could take place in certain high-

compression zones of the heated zone if the thermal loading is too severe.



In additionto thethermocryogenicloading,thetankalsois subjectedto cryogenliquid pressureload-
ing,internalpressureloading,andtank-wallinertialoading.Severeliquid sloshinginsidealargefuel tank
(dynamicloading)coulddisturbthecontrolof theflight vehicle.

A circularcylindricalshellwith hemisphericalbulkheadshasbeenconsideredasapotentialcandidate
cryogenictankgeometryfor futurehypersonicflight vehicles.Thus,studieson thethermocryogenicper-
formanceof this typeof tankarerequired.Someresultsof thethermalresponseof this horizontallyori-
entedcryogenictanksubjectedto simulatedaerodynamicheatingprofileswerereportedby Stephensand
Hanna(refs.2-3). Theresultsof theirstudiescouldbeusedasthebasistoconductthermocryogenicbuck-
ling andstressanalysesof acryogenictankof this geometry.

Someexistingclosed-formsolutionswereobtainedby Hill et al. (refs.4---6)for calculatingthermal
bucklingtemperaturesandthermalstressesin a thin circularcylindricalshellheatedalonganarrowaxial
strip.Thesesolutionequations,however,mightnotgive accurateresultsfor thecaseof afinite-lengthcir-
cular cylindrical tankwith hemisphericalbulkheads,becausethecylindrical shell consideredby those
investigatorswaslongenoughsothattheendeffectcouldbeneglected.

Thisreportconcernsthermocryogenicbucklingandstressanalysesof ahorizontallyorientedcryogen-
ic tanksubjectedto cylindrical stripheating.The tank is of relativelyshortcircularcylindrical shellwith
its twoendscappedwithhemisphericalshells.Becausethecryogenictankunderconsiderationisrelatively
short,theendeffectcouldbefelt in mostof thecylindricalsectionarea.Therefore,thefinite elementmeth-
od is usedin thepresentthermocryogenicbuckling andstressanalyses.Theresultspresentedshowhow
thethermocryogenicbucklingtemperaturesandstressfield in thetankwall changewith theliquid-cryogen
fill level andalsowith tank-wallthickness.

Furthermore,additionalstressanalyseswereconductedto find thelevelsof contributionsof stresses
arisingfrom cryogenicliquid pressureloading(liquid sloshingnotconsidered),internalpressureloading,
andtank-wall inertia loading(from flight maneuvers).Thestudiesestablishedthecritical stressdomains
for strain-gageinstrumentationsfor obtainingexperimentalstressdata.

DESCRIPTION OF PROBLEM

Figure 1 shows the geometry of the cryogenic fuel tank and the coordinate systems. The circular cy-

lindrical section of length, l, and the hemispherical bulkheads have radius, R, and wall thickness, t. The

xyz-system is the global coordinate system for the tank, and the x'y'z'-system is the local coordinate sys-

tem used in the finite element mesh generation of a hemispherical bulkhead.

The cryogenic fuel tank was partially filled and subjected to four different loading conditions described

below (cf. fig. 2).

1. Thermocryogenic loading.-The hot region will be heated under constant temperature

differential of AT = 1 °F (i.e., temperature of hot region minus temperature of cold

region), except the end regions of the temperature profile where the temperature de-

creases linearly over a 12" arc down to zero at the liquid-cryogen fill level. The ramp

zone of the temperature profile is about 15 ° according to the heat transfer analysis

(refs. 2 and 3). Because of the finite element sizing chosen, however, a 12 ° temperature

ramp was used.



2. Cryogenicliquid pressureloading.

3. Internalpressureloading.

4. Tankwall inertia loading.

Theloadingconditions2 and4 areflight maneuverg-dependent loadings.

The main purpose of this report is to perform thermocryogenic buckling and stress analyses of the cyo-

genic tank subjected to thermocryogenic loading (condition 1). The stress levels resulting from loading

conditions 2-4 are secondary in nature, and they are calculated to show the levels of their stress contribu-

tions in comparison with the stress fields induced by thermocryogenic loading. For both thermocryogenic

buckling and stress analyses, the cryogenic tank was supported at two end points. One end point is fixed,

and the other end point can move freely only in the z-direction.

FINITE ELEMENT MODELS

The structural performance and resizing (SPAR) finite element program was used in setting up two

finite element models. Because of the symmetry with respect to the xy- and xz-planes, only a quarter of the

tank lying in the region 0 < 0 -: 180 °, z ::-0, was modeled (fig. 1). The SPAR commands SYMMETRY
PLANE = 2 and SYMMETRY PLANE = 3 then were used in the CONSTRAINT definition to generate

the whole tank for the stress computations. Figures 3 and 4, respectively, show the finer model named

3°ELD and a coarser model named 6°ELD setups for the tank. In these graphical displays, the SPAR com-

mand SYMMETRY PLANE = 3 was used in generating the model's mirror image with respect to the

xy-plane. The elements in the circular cylindrical section were generated based on the xyz-coordinate sys-

tem. In the mesh generation of the hemispherical bulkhead, the x'y'z'-coordinate system was used so that

the horizontal grid lines would match the fuel fill levels. The purpose of using two models was to study

the finite element solution convergency and to define mesh density required to obtain adequate buckling

and stress solutions. The finer model 3°ELD was needed for obtaining satisfactory buckling solutions and

smooth buckling mode shapes. For the buckling analysis, past experience showed that the element length-

to-thickness ratio must be about 5 to 1. The 3°ELD model was set up according to this criterion. Table 1

compares the sizes of the two finite element models. As will be seen later, the 3°ELD model requires

roughly 10 times the computational central processing unit (CPU) time needed to run the 6°ELD model in

the eigenvalue extractions.

Table 1. Sizes of finite element models.

Item 3°ELD model 6°ELD model

Joint locations 4271 1086

E43 elements 4160 1020

E33 elements 60 30

4



THERMOCRYOGENIC BUCKLING ANALYSIS

The eigenvalue equation for buckling problems is of the form

X+KX = 0 (1)
g

where K
g

= system initial stress stiffness matrix (or differential stiffness matrix) corresponding to a partic-

ular applied force condition (e.g., thermal loading), and in general a function of X

K = system stiffness matrix

X = displacement vector

)_i = eigenvalues for various buckling modes

The eigenvalues _i (i = 1, 2, 3 .... ) are the load level factors by which the static load (mechanical or ther-
mal) must be multiplied to produce buckling loads corresponding to various buckling modes. Namely, if

the applied temperature load is AT, then the buckling temperature, A T r, for the i-th buckling mode is ob-
tained from

= K.AT (2)ATr t

Equation (1) will give the eigenvalues (either positive or negative) in the neighborhood of zero. If one

desires to find the eigenvalue in the neighborhood of c, then the following "shifted" eigenvalue equation

may be used:

(_.-C)KgX + (K +CKg)X = 0 (3)

As will be seen later, using equation (3), the number of eigenvalue iterations could be greatly reduced (i.e.,

fast eigenvalue convergency).

In the eigenvalue extractions, the SPAR program uses an iterative process consisting of a Stodola ma-

trix iteration procedure, followed by a Rayleigh-Ritz procedure, and then followed by a second Stodola

procedure. This process results in successively refined approximations of m eigenvectors associated with

the m eigenvalues of equation (1) closest to zero. Reference 7 describes the details of this process.

THERMOCRYOGENIC AND MECHANICAL STRESS ANALYSES

The thermocryogenic stress solutions (for different fill levels) are the byproducts of thermocryo-

genic buckling analysis, because the static stress analysis must be performed before the eigenvalue

solutions could be obtained. The thermocryogenic stress solutions are based on the unit temperature load

AT = 1 °F (fig. 2) and are the influence function-type stress solutions. For other AT which could be as

high as 300 °F (refs. 2 and 3), those stress solutions must be multiplied by the actual value of AT to obtain

actual stresses under linear elasticity.

For the mechanical stress analyses (fig. 2) similar influence function-type loadings were used. That

is, for both the liquid pressure loading and the tank inertia loadings, 1 g was used, and for the internal pres-

sure loading, p = 1 lb/in z was used.
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Under the internal pressure loading, the stresses and radial displacements induced in a long circular

cylindrical shell (AR c) and a spherical shell (ARs), respectively, may be calculated from the following

equations (ref. 1):

pR. = p____RR. AR = pR(2-v) (4)
Cylinder: °O = --t- ' °z 2t ' c 2Et

= pR. AR = pR(1-v) (5)
Sphere: °O = °e_ 2t ' s 2Et

The radial displacement ratio will then be

ARc (2 -v)

AR (1 -v)
S

(6)

The stresses and radial displacement calculated from the finite element models will be compared with the

corresponding values calculated using equations (4) and (5).

NUMERICAL RESULTS

In the finite element analysis, the following physical properties of the stainless steel cryogenic tanks

and of the liquid hydrogen cryogene were used.

Table 2. Geometry of cryogenic tank.

R = 29.84375 in."

l = 120 in."

t = 0.3125 in. (for stress analysis)"

R/t = 95.5," 150, 200, 250, 300, 400
(for thermocryogenic bucking analysis)

"Geometry of NASA generic research cryogenic tank.

Table 3. Material properties' of the cryogenic tank and

liquid hydrogen.

Low temperature High temperature

E, lb/in 2 27.9 x 10 6 27.9 x 106

v 0.28 0.28

P, lb/in 3 0.29 0.29

a, in/in-OF 9.0 x 10 -6 7.8 x 10 -6

Pn' lb/in3 0.002685

"Stainless steel SA 240 type 304.
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Thermocryogenic Buckling

In the eigenvalue extractions, the maximum number of iterations was set to 100. However, for most

cases in which the nonshifted eigenvalue equation (1) was used, the convergency criterion

{ (_'i - _'i-1 )/_i I < 10-4} for eigenvalue iterations could be reached in fewer than 100 iterations. If shift-

ed eigenvalue equation (3) was used, the number of eigenvalue iterations could be reduced greatly.

Figure 5 shows a plot of the critical buckling temperature A T r as a function of the number of eigen-

value iterations using both equations (1) and (3). This plot was generated using the 3°ELD model, with

R/t = 95.5 having 0 = 60 ° fill level.

Notice that when equation (1) was used, the rapid convergency rate occurs during the initial 30 itera-

tions, and after that the convergency rate is very slow. For this particular case the convergency criterion

was reached at 72 iterations. When equation (3) was used, the eigenvalue converged at only seven itera-

tions. The value of ATcr calculated using equation (3) was 1 to 3 °F lower (i.e., slightly more accurate)

than that calculated using equation (1).

Figure 6 shows buckled shapes of the 3°ELD model with R/t = 95.5 having different fill levels. In the

figure the values of R/t and AT r are shown also. Notice that the buckling is local in nature and occurs in

a small, central region of the tank slightly above the fill level, where the peak axial compressive stress lies.

Figure 7 shows the buckling shapes of the 6°ELD model with R/t = 95.5 having different fill levels. Notice

that the elements are too coarse to give smooth buckling shapes. Table 4 summarizes the thermocryogenic

buckling temperature AT r of a cryogenic tank having R/t = 95.5 under different fill levels.

Table 4. Thermocryogenic buckling temperatures for different fill
levels (R/t = 95.5).

ATr, °F

0, deg 3°ELD 6°ELD A (AT r ), °F Solutiondifference, %

30 2649 2323 326 12

60 2292 2063 229 10

90 2489 2241 248 10

120 2426 2182 244 10

150 2378 2114 264 11

168 2007 1801 206 10

In table 4, for the fill levels of 0 = 30 °, 90 °, 120 °, 168 °, the lowest eigenvalues were found to be neg-

ative, and therefore, the eigen-shifting method was used to search the lowest positive eigenvalues. The

negative AT r implies that the heated zone (fig. 2) turned out to be a cold zone (i.e., tank turns upside
down). The 6°ELD model underpredicts the buckling temperatures by more than 200 °F, and the percent

solution difference is practically insensitive to the change of the fill level.

7



Figures8 and9, respectively,showthebuckledshapesof 3°ELD and6°ELD with 0 = 60 ° fill level

but different R/t. The number of buckles increases slightly as the value of R/t increases. In those figures

the values of AT and R/t are indicated.
¢r

Table 5 summarizes the thermocryogenic buckling temperature A T r of cryogenic tanks with different

R/t ratios having identical fill levels of 0 = 60 °.

Table 5. Thermocryogenic buckling temperatures for different R/t (0 = 60 ° fill level).

R/t

95.5" 150 200 250 300 350 400

oF } 3°ELD 2292 1415 1060 849 707 604 525ATr' -- 6°ELD 2063 1198 832 609 451 347 286

A (ATr),°F 229 217 228 240 256 257 239

Solution 10 15 22 28 36 43 46
difference, %

"Geometry of NASA generic research cryogenic tank.

Notice from table 5 that the 6°ELD model gives lower values of AT r than those calculated using the

3°ELD model. The discrepancy of the eigenvalue solutions between the two models averages slightly

more than 200 °F. The present study confirmed that to obtain satisfactory buckling solutions with smooth

buckling shapes, the element density of the finite element model must be such that the length-to-thickness

ratio is about 5. Thus, for thinner tanks, finer mesh may be required. However, because of excessive CPU

time problems, finer mesh was not used for high R/t tanks.

Figure 10 shows plots of AT r as a function of the fill level for the two finite element models using data

shown in table 4. The buckling temperature is seen to be relatively insensitive to the change of the fill level.

Figure 11 shows plots of AT r as a function of R/t for the 0 = 60 ° fill level case using data presented
in table 5. The buckling temperature is quite sensitive to the change of R/t. The rate of decrease of AT r is

faster in the lower R/t region and becomes slower as R/t increases.

Figure 12 shows the computational CPU time plotted as a function of the number of eigenvalue itera-

tions required until convergencies for the two cases of finite element models. The CPU time increases al-

most linearly with the number of iterations for both models. The CPU time required to extract eigenvalues

using the 3°ELD model is almost 10 times that required when using the 6°ELD model. For each eigenvalue

iteration, the 3°ELD and 6°ELD models required about 5.23 and 0.69 CPU min, respectively. As will be

seen later, for the stress analysis, the 6°ELD model, which requires much shorter CPU time, gave fairly

good stress solutions.

Induced Stresses and Deformations

The stresses induced and the resulting deformations of the cryogenic tank under the four loading con-

ditions are presented below.
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Thermocryogenic Loading

As mentioned before, the thermocryogenic stress solutions are generated during the thermocryogenic

buckling analysis. Figure 13 shows the deformed shapes of the 3°ELD model with different fill levels sub-

jected to thermal loading of AT = 1 °F. At higher fill levels (i.e., 0 = 30 °, 60°), the hot region bulged

upward, and the cold region caved in slightly in the region below the fill-level line. The deformed shape

at fill level 0 = 90 ° is the most interesting. The top and fill-line regions of the tank caved in, and the central

region of the tank wall bulged out at three angular locations to form three lobes. At the 0 = 120 ° fill level,

the top and fill-level zones of the tank caved in, and the tank wall bulged out almost laterally. At low fill

levels (0 = 150 ° and 168°), the bottom of the tank caved in severely. Figure 13 also shows the locations

of peak (positive or negative) stress points and stress magnitudes at those points. Notice that the peak ten-

sion and peak compression of the axial stresses o z are at the midsection of the tank. The peak axial tensile

stress is always at the fill level, and the peak axial compressive stress is slightly above the fill level where

the potential thermocryogenic buckling could occur. The peak values of shear stress XOz are at the

cylinder-hemisphere junctures, and are slightly above the fill level. The peak tension and the peak

compression of tangential stresses o 0 are near the peak shear stress points, but are lying in the hemispher-

ical bulkhead regions.

Figure 14 shows similar results using the 6°ELD model. The deformed shapes of the 6°ELD model are

quite similar to those of the 3°ELD model. The magnitudes of the peak stresses and their locations also are

shown in the figure.

Table 6 summarizes the stress magnitudes at high-stress points for different fill levels calculated from

the two finite element models. The 6°ELD model gives slightly less stress intensities as compared with

those calculated from the 3°ELD model.

Table 6. Stresses at high-stress points--thermocryogenic loading, AT = 1 OE

0, deg Model o 0 , lb/in 2 Oz, lb/in 2 "COz, lb/in2

30 3°ELD 11.48 -14.46 112.81 --81.59 27.54

30 6°ELD 7.79 -13.32 106.03 -77.74 24.57

60 3°ELD 11.89 -11.41 88.56 -98.58 24.26

60 6°ELD 10.33 -8.97 82.52 -92.07 20.99

90 30ELD 11.99 -12.01 93.44 -91.49 24.79

90 6°ELD 8.67 -8.62 86.96 -85.13 21.42

120 3°ELD 11.82 -12.49 95.53 -93.32 25.15

120 6°ELD 8.74 -10.04 89.54 -87.18 21.80

150 3°ELD 12.91 -10.26 78.64 -96.13 23.95

150 6°ELD 11.52 -9.29 70.94 -88.76 20.71

168 3°ELD 15.82 -14.08 107.74 -108.14 30.11

168 6°ELD 12.95 -9.74 106.03 -103.14 27.34
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Figure15showsplotsof stressesasfunctionsof fill level 0 usingthedatafrom table6. Noticethat
thestresslevelsarerelativelyinsensitiveto thechangeof thefill levelexceptatlow andhighfill levels.

Figure16showsdistributionsof tensilestressesOzando4 in thetankwall alongdifferentfill-level
linescalculatedfrom thetwo models.The6°ELD modelgivesslightly lowerstressvaluesthanthe3°ELD
model.The maximumOzoccursat themidsectionof thetankfor all thefill levelsexcept0 = 150° for
which thepeakOzoccursnearthequartersectionsof thecylindrical segment.This figure showsthatthe
two-dimensionalanalysisis notapplicablefor thepresentshort-tankcase.

Figure17showsdistributionsof theshearstressXOz in the tank wall along the different fill-level lines.

The shear stress concentration occurs at the cylinder-hemisphere juncture, and its intensity increases

slightly at very high and very low fill levels (c.f., table 6). Again, the 6°ELD model gives slightly lower

stress concentrations than those given by the 3°ELD model.

Figure 18 shows circumferential distributions of Oz in the z = 0 plane (i.e., tank central cross-section)

for different fill levels. The two models give almost identical stress distributions except at the high-stress

(tension or compression) zones, where the 6°ELD model consistently gives slightly lower stress magni-

tudes than those given by the 3°ELD model. The locations of the stress concentration points are always in

the vicinities of the fill-level line, and they migrate with the changing fill-level line.

Figure 19 shows the circumferential distributions of tangential stress o 0 in the meridian plane (i.e.,

q_ = constant plane) and shear stress XOz in the z =//2 plane. The two models give quite close stress solu-

tions except at high-stress regions. Like the previous case, the stress magnitudes calculated from the

6°ELD model are slightly lower than those calculated from the 3°ELD model in the high-stress regions.

Again, the stress concentration points lie in the neighborhood of the fill-level line and move together with

the fill-level line.

Cryogenic Liquid Pressure Loading

Under the cryogenic liquid pressure loading, the worst stress field that could be generated is the full-
tank case. To see the effect of the fill level on the induced stress field, both the full-tank (0 = 0 °) and 0 =

30 ° fill-level cases were analyzed under 1-g liquid pressure loading. Figures 20 and 21, respectively, show

deformed shapes of 3°ELD and 6°ELD models. For the full-tank case, the tank bends like a beam. Because

the tank is supported at two endpoints, high-stress concentrations occurred in the vicinities of those points

and induced severe local deformations. For the 0 = 30 ° fill-level case, the top of the tank remains almost

straight, and the fill-level line areas caved in slightly. The bottom of the tank bulged out like the full-tank

case, but to a lesser degree. The peak tension and peak compression of axial stress o z are always in the

center cross-section of the tank. The peak axial compressive stress is at the top midpoint (i.e., 0 = 0 °, z =

0) of the tank for the full-tank case, and its location moved down with the fill-level line (0 = 30 ° fill-level

case). The peak axial tensile stress is always at the bottom center of the tank regardless of the fill level.

The peak shear stresses for both fill levels occur at the 0 = 90 ° lines (not at the fill-level line) and cylinder-

hemisphere junctures.

Figure 22 shows distributions of the axial tensile stress Oz along the bottom generator of the tank for

the two fill levels. The stress values calculated from the 3°ELD and 6°ELD models are very close in the

central region of the tank, and are practically identical outside this area. Figure 23 shows the axial distri-

bution of the shear stress XOz along the 0 = 90 ° tank generator. Again, the two finite element models give

extremely close shear stress solutions. At the support point, there is large shear stress concentration.
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Figure24showscircumferentialdistributionof oz in thez = 0 plane. For the full-tank case, the peak

tensile and peak compressive stresses are at the bottom and top centers of the tank, respectively. For the

0 = 30 ° fill level, the peak axial compressive stress Oz is slightly below the fill level. Figure 25 shows

circumferential distributions of X0z in the z = l/2 plane and o¢ in the _ = 90 ° plane, respectively. Because

of the support point, stress concentration of o¢ occurs at this point. Table 7 lists the peak stresses at the
high-stress points in the tank (stress concentrations at the support points ignored).

Table 7. Stresses at high-stress points--liquid pressure loading (1 g).

Fill level Model o 0 , lb/in 2 o z, lb/in 2 "t0z, lb/in 2

0 ° 3°ELD 24.42 -16.55 39.74 -32.11 14.96

0 ° 6°ELD 25.00 -16.50 39.74 -32.09 14.83

30 ° 3°ELD 23.65 -13.90 38.71 -26.73 15.20

30 ° 6°ELD 24.25 -13.98 38.18 -26.53 15.09

Internal Pressure Loading

Figures 26 and 27, respectively, show the deformed shapes of the 3°ELD and 6°ELD models subjected

to internal pressure ofp = 1 lb/in 2. Notice the radial strain incompatibility at the cylinder-hemisphere junc-

tures. For v = 0.28, equation (6) gives

AR
c (2 -v)

ARs (1 -v)
- 2.3883 (7)

Thus, the radial displacement of the cylindrical section is more than twice that of the hemispherical bulk-

head. This radial strain incompatibility is the cause of the deformed shapes of the cylinder-hemisphere

junctures (figs. 26 and 27).

Figure 28 shows plots of tangential stress o 0 along a generator of the tank calculated from the two

finite element models. The magnitude of the stress in the cylindrical section remains constant up to the

cylinder-hemisphere juncture, where the stress magnitude tapers down to half (with slight overshoot) and

remains so in the hemispherical bulkhead region (eqs. (4) and (5)). Because of the sharp transitions in the

tangential stress and radial displacement in the cylinder-hemisphere junctures, high transverse shear stress

could be generated there. The four node elements used in the two finite element models can not provide

the transverse shear stress for which eight node elements are required. Table 8 compares the stresses cal-

culated from theory of elasticity and the two finite element models. Both models give stress values very

close to those calculated from the theory of elasticity.
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Table8. Stressesinducedby internalpressureloading(p= 1lb/in2).

o0, lb/in2 Oz, lb/in2

Theoryof elasticity pR = 95.50 pR _ 47.75
t 2t

3°ELD 95.47 47.74

6°ELD 95.36 47.73

Tank-Wall Inertia Loading

Under 1-g lateral inertia loading, the tank will bend like a beam under its own weight. Figures 29 and

30, respectively, show the deformed shapes of the 3°ELD and 6°ELD models. The magnitude of the peak

axial compressive stress is slightly larger than that of the peak axial tensile stress. Both stresses are in the

tank center cross-section. The peak shear stresses are at the cylinder-hemisphere junctures and are at the

0 = 90 ° line. Figure 31 shows axial distributions of Oz along the tank bottom generator calculated from

the two models. The 6°ELD model gives slightly lower values of o z in the center region of the tank. Figure

32 shows the axial distributions of X0z along the 0 = 90 ° tank generator. Both models give very close shear

stress solutions. Again, the support point created very high shear stress concentrations. Figure 33 shows

the circumferential distributions of Oz in the z = 0 plane, and figure 34 shows the composite circumferen-

tial plots of XOz in the z =//2 plane, and o 0 in the _ = 90 ° plane. The support point also created very high

stress concentrations of o 0. Table 9 lists the stresses at the high-stress points resulting from 1-g inertia

loading (stress concentrations at the support points not considered).

Table 9. Stresses at peak stress points resulting from tank inertia

loading of 1 g.

Model o 0 , lb/in 2 Oz, lb/in 2 "toz, lb/in2

3°ELD 43.64 -44.46 78.28 --82.76 33.81

6°ELD 44.01 -43.43 76.43 -78.19 33.65

High-Stress Domains

Based on the above stress analyses, the domains of high-stress points may be mapped on the cryogenic

tank as shown in figure 35. Those high-stress domains were mapped based on the thermocryogenic stress

analysis, because this type of loading will create the most severe stress fields as compared with other

loading cases. In the experimental measurement of stresses, the high-stress domains are the areas where

strain gages should be installed for obtaining the highest data outputs.

CONCLUDING REMARKS

Two finite element models of a cryogenic tank were set up for thermocryogenic buckling analysis and

stress analysis of the tank under different loading conditions. The results of the analyses are summarized

in the following:
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1. The thermocryogenic buckling temperature, A T r, was insensitive to the liquid-cryogen
fill level; however, it was sensitive to the radius-to-thickness ratio, R/t, and decreased

with the increase of R/t.

2. In thermocryogenic buckling analysis, the 6°ELD model gave lower values of AT r and

could not give as smoothly buckled shapes as those the 3°ELD model gave. For ther-

mocryogenic buckling analysis, the finite element density should be such that the ele-

ment length is about five times the element thickness.

3. In the stress analysis, both 3°ELD and 6°ELD models gave very close stress solutions.

Therefore, the 6°ELD model is adequate for reasonably accurate stress solutions, be-

cause it requires about one-tenth of the computer central processing unit time than that

required to run the 3°ELD model.

4. Thermocryogenic loading induced the most severe stress fields. The peak tangential

stresses were in the region bounded by the q_ = 3 ° to 12 ° meridian planes; the peak axial

stresses occurred in the z = 0 plane for all the fill levels except the 0 = 150 ° fill-level

case, for which the axial tensile stress occurred near the z = *_-I/4planes. The peak shear

stresses occurred in the z = -,-l/2 planes. The locations of those high-stress points moved

with the changing fill level.

5. The stress fields induced by liquid pressure, internal pressure, and inertia loadings are

secondary in nature as compared with the thermocryogenic loading.

6. High-stress domains were mapped on the cryogenic tank wall for experimental strain-

gage installations.

Dryden Flight Research Center

Nation a l A erona u tics and Spa ce A dm inistra tion

Edwards, California, September 15, 1993
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Figure 2. Thermocryogenic and mechanical loadings of cryogenic tank.
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Figure 3. Finite element model 3°ELD set up for cryogenic tank.
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Figure 4. Finite element model 6°ELD set up for cryogenic tank.
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Figure 6. Buckled shapes of partially filled cryogenic tank subjected to cylindrical strip heating; 3°ELD finite ele-
ment model; R/t = 95.5.

19



O°

(c) 8 = 90, ATcr = 2489 °F.

AT

uid

cryogen
level

(d) 0 = 120°; ATcr = 2426 °F.

Figure 6. Continued.
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Figure 6. Concluded.
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(a) 0 = 30°; ATcr = 2323 °F.

AT

93O540

Co) 0 = 60°; ATcr = 2063 °F.

Figure 7. Buckled shapes of partially filled cryogenic tank subjected to cylindrical strip heating; 6°ELD finite ele-

ment model; R/t = 95.5.
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Figure 7. Continued.
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Figure 7. Concluded.
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(b) ATcr = 1060 °F; R/t = 200.

Figure 8. Buckled shapes of partially filled cryogenic tank subjected to cylindrical strip heating; 3°ELD finite ele-

ment model; 0 = 60°.

25



AT

Liquid

cryogen
level

(c) ATcr = 849 °F; R/t = 250.

(d) ATcr = 707 °F; R/t = 300.

Figure 8. Continued.
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Figure 9. Buclded shapes of partiaUy filled cryogenic tank subjected to cylindrical strip heating; 6°ELD finite ele-

ment model; 0 = 60 °.
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Figure 9. Continued.
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(e) ATcr = 347 °F; R/t = 350.

(f) ATcr = 286 °F; RIt = 400.

Figure 9. Concluded.
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Figure 10. Variation of buckling temperature ATcr with liquid-cryogen fill level 0; R/t = 95.5.
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Figure 13. Deformed shapes of cryogenic tank and locations of high-stress points; AT = 1 °F; stresses expressed

in pounds per square inch; 3°ELD finite element model.
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Figure 13. Continued.
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Figure 14. Deformed shapes of cryogenic tank and locations of high-stress points; AT = 1 °F; stresses expressed

in pounds per square inch; 6°ELD finite element model.

37



AT = 1 °F

a e = 8.67

_e = -8.62

_ Oz = 86.96

cryogen _ez = 21,42

level _._8

(c)e = 90°.

AT = 1 °F

1;ez = -21.80

Gz = 89.54

(_)_'_)"\ a : 8.74

y. _....... _ G e : -10.04

Liquid

cryogen 9_-_9
level

(d) e = ]20°.

Figure 14. Continued.
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Figure 14. Concluded.
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Figure 15. Plots of stresses at high-stress points as functions of liquid-cryogen flu level; thermocryogenic loading;
AT = 1 OF.
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Figure 17. Distributions of shear stresses in the cryogenic tank wall along liquid-cryogen fill level lines; AT = I°F.
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Cryogenic Liquid Pressure Loading
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Figure 20. Deformed shapes of cryogenic tank clue to cryogenic liquid pressure loading and locations of high-stress

points; 1 g; stresses expressed in pounds per square inch; 3°ELD finite element model.
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Figure 21. Deformed shapes of cryogenic tank due to cryogenic liquid pressure loading and locations of high-stress

points; 1 g; stresses expressed in pounds per square inch; 6°ELD f'mite element model.
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Figure 22. Distributions of axial stress Gz along bottom generator of cylindrical shell, induced by cryogenic liquid
pressure loading; 1 g.
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Figure 23. Distributions of shear stress'COzalong O= 90° tank wall generator, induced by cryogenic liquid pressure
loading; 1 g.
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Internal Pressure Loading
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0

i
_'0 e = 95.47 lb./in?

z = O: L °z = 47.74 lb./in 2 93o_

Figure 26. Deformed shape of cryogenic tank under intemal pressure loading; p = 1 lb/'m2; 3°ELD f'mite element
model.

Figure 27.
model.

FO e = 95.36 lb./in?z = O: (_z = 47.73 lb./in. 2 93o_

Deformed shape of cryogenic tank under internal pressure loading; p = 1 lb/in2; 6°ELD finite element
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Figure 28. Distribution of tangential stress o 0 along a tank wall generator, p = 1 lbfm 2.
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¢ez = 33.81
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= 78.28

Figure 29. Deformed shape of cryogenic tank due to tank wall inertia loading and locations of high-stress points;

1 g; stresses expressed in pounds per square inch; 3°ELD finite element model.

0 z = -78.19

l:ez = 33.65 _
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930603

Figure 30. Deformed shape of cryogenic tank due to tank wall inertia loading and locations of high-stress points;

1 g; stresses expressed in pounds per square inch; 6°ELD finite element model.
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Figure 31. Distribution of axial stress t_z along bottom generator of cylindrical shell, induced by tank wall inertia
loading; 1 g.
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Distribution of shear stress 'C0z along 0 = 90 ° generator, induced by tank wall inertia loading; 1 g.
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Figure 33. Distribution of axial stress Oz in z = 0 plane due to tank wall inertia loading; 1 g.
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Figure 34. Distributions of tangential stress G0 in _) = 90 ° plane and shear stress ZOz in z =l/2 plane, due to tank
wall inertia loading; 1 g.
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Figure 35. High-stress domains for strain-gage installations.
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APPENDIX

SPAR INPUT PROGRAM FCRY30 FOR THERMO-CRYOGENIC ANALYSIS

OF CRYOGENIC TANK-FILL LEVEL=30 DEGREES

[XQT TAB $ Basic table inputs.

ONLINE=I $ For normal printout.
START 4271 $ Total number of join locations.

TITLE" THERMO-CRYOGENIC BUCKLING OF CRYOGENIC TANK $

TEXT $ To create alphanumeric text documenting the analysis.

"CRYOGENIC TANK QUARTER MODEL SET UP BY WILLIAM L. KO, 2-8-1993 $

"LINEAR DIMENSIONS IN INCHES $

"TEMPERATURE IN DEGREE FAHRENHEIT $

"EIGENVALUE SOLUTIONS $

ALTREF $ Alternate reference frame 2 for hemispherical bulkhead.

2 1,90. 2,90. 3,0. 0.,0.,60. $

JLOC $
FORMAT= 2 $

1 29. 84375

1 29. 84375

41 29 84375

113 29 84375

1 29 84375

4160 29

1 29

4271 29

NREF=2 $

82

4200
153

4129

224

4058

295

3987

366

3916 7

437 9

3845 9

508 i0

3774 i0

579 12

3703 12

650 13

3632 13

721 14

3561 14

0. 0.

0. 58.5

0. 60. $

6. 0.

6. 58.5

84375 177. 0.

84375 177. 58.5

84375 180. 60. $

1.561901 0
1.561901 0

3.119521 0

3.119521 0

4.668591 0

4.668591 0

6 204865 0

6 204865 0

7 724131 0

724131 0

222226 0

222226 0

695043 0

695043 0
138547 0

138547 0

548779 0

548779 0

921875 0

921875 0

792 16.254071 0

3490 16.254071 0

863 17 541716 0

To define joint locations.
Cylindrical coordinates for cylindrical section.

29.84375 3. 0. 2 41 40 $

29.84375 3. 58.5 $

3419 17

934 18

3348 18

1005 19

3277 19

1076 21

3206 21

1147 22

3135 22

1218 23

3064 23

1289 24

2993 24

1360 25

29.84375 174. 0. 57 71 40 $

29.84375 174. 58.5 $
29.84375 180. 0. 2 71 40 $

29.84375 180. 58.5 $

To generate hemispherical bulk head using reference frame 2.
29.802850 1 561901 90 29.802850 31 I$

541716 0

781280 0

781280 0

969367 0

969367 0

102718 0

102718 0

178228 0

178228 0

192950 0

192950 0

144101 0

144101 0

029075 0

-29.802850
29.680263

-29.680263

29.476324

-29.476324

29.191592

1 561901 90

3 119521 90

3 119521 90
4 668591 90

4 668591 90

6 204865 90.

-29.802850

29.680263

-29.680263

29.476324

-29.476324

29.191592

-29.191592 6

28 826849 7

-28 826849 7

28 383093 9

-28 383093 9
27 861541 I0

-27 861541 I0

27 263622 12

-27.263622 12

26 590976 13

-26 590976 13

25 845446 14

-25 845446 14

204865 90. -29.191592

724131 90. 28.826849

724131 90. -28.826849

222226 90.

222226 90

695043 90

695043 90
138547 90

138547 90

548779 90

548779 90. -26

921875 90. 25

921875 90 -25

28.383093

-28.383093

27 861541

-27 861541

27 263622

-27 263622

26 590976

590976

845446

845446

25

-25

24

-24

23

-23

22

-22

21

-21

19

-19

18
-18
17

-17

16

029075 16.254071 90

029075 16.254071 90

144101 17.541716 90

144101 17.541716 90

192950 18.781280 90

192950 18 781280 90

178228 19 969367 90

25 029075

-25 029075

24 144101

-24 144101

23 192950

-23 192950

22 178228

178228

102718

102718

969367

969367

781280

192950 90 -18.781280

144101 90. 17.541716

144101 90. -17.541716

029075 90. 16.254071

178228 19

102718 21

102718 21

969367 22

969367 22

781280 23

781280 23

541716 24

541716 24

254071 25

969367 90. -22

102718 90 21
102718 90 -21

178228 90 19

178228 90 -19

192950 90 18

31 i$

31 I$

31 I$

31 i$

31 I$

31 I$

31 i$

31 i$

31 I$

31 I$

31 I$

31 I$

31 i$

31 I$

31 i$

31 i$

31 i$

31 I$

31 I$

31 I$

31 I$

31 I$

31 I$
31 i$

31 i$

31 i$

31 i$

31 I$

31 i$

31 i$

31 i$

31 i$

31 i$
31 i$

31 I$

31 I$
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2922 25.029075 0

1431 25.845446 0
2851 25 845446 0

1502 26

2780 26

1573 27

2709 27

1644 27
2638 27

1715 28

2567 28

1786 28

2496 28

590976 0
590976 0

263622 0

263622 0

861541 0

861541 0

383093 0

383093 0

826849 0

826849 0

1857 29.191592 0

2425 29.191592 0

1928 29.476324 0

2354 29.476324 0

1999 29.680263 0

2283 29.680263 0

2070 29.802850 0

2212 29.802850 0
2141 29.84375 0

MATC $
1 27.9+6 0.28

2 27.9+6 0.28

SA $

-16 254071 25 029075 90

14
-14

13

-13

12

-12
I0

-i0

9

-9

7

-7

6

-6

4

-4

3

-3

1

-I

0

0.29

0.29

FORMAT=ISOTROPIC; 1

CONSTRAINT CASE 1 $

SYMMETRY PLANE=2 $

SYMMETRY PLANE=3 $

ZERO 1 2; 2171 $

921875 25

921875 25

548779 26
548779 26

138547 27

138547 27

695043 27

845446 90
845446 90

590976 90

590976 90

263622 90
263622 90

861541 90

-16.254071

14.921875

-14.921875
13.548779

-13 548779

12 138547

-12 138547

i0 695043

695043 27
222226 28

222226 28

724131 28

724131 28

204865 29

204865 29

861541 90. -I0

383093 90. 9

383093 90. -9

826849 90.

826849 90

191592 90

191592 90

668591 29.476324 90

668591 29.476324 90

119521 29.680263 90

119521 29.680263 90

561901 29.802850 90

561901 29.802850 90
29.84375 90

695043

222226

222226

7.724131

-7724131

6204865

-6.204865

4 668591

-4 668591

3 119521

-3 119521
1 561901

-I 561901

0

31

31
31

31
31

31

31
31

31

31

31

31

31

31

31
31

31

31
31

31

31

31

TO specify material properties.
9.0-6 9.0-6 $ For hot region.

7.8-6 7.8-6 $ For cold region.

Shell section properties.

0.3125 $ Shell thickness.

To constrain certain joint.

Symmetry with respect to xz plane.

I$
i$
15
I$
15
15

i$
i$
15
15
I$
I$
15
I$
i$
15
I$

i$
15
i$
15
15

Symmetry with respect to xy plane.
Joint 2171 has zero x- and y-displacements.

[XQT ELD $
E43 $
GROUT I" HOT REGION $

NMAT=I $

NSECT=I $
1 42 43 2 1 1 40 $

42 113 114 43 1 9 70 $

GROUP 2" COLD REGION $

NMAT=2 $

NSECT=I $

To form data sets containing element definitions.

Quadrilateral combined membrane and bending element.

Pointer command for material I.

Pointer command for shell thickness i.

30 degree liquid level.

681 752 753 682 1 49 70 $ 30 degree liquid level.

4160 4231 4232 4161 1 1 40 $

E33 $ Triangular combined membrane and bending element.

GROUP I" HOT REGION $

NMAT=I $

NSECT=I $
41 82 83 2 30 $

GROUP 2" COLD REGION $

NMAT=2 $

NSECT=I $
4271 4230 4229 2 30 $

[XQT TOPO$ To analyze element interconnection topology.
RESET LRKMAP=55000 $ Block length of data set KMAP.

RESET LRAMAP=I00000 $ Block length of data set AMAP.
RESET MAXSUB=54000 $ Maximum allowable value of size index "Is".

[XQT E $ Element information packet.

[XQT EKS $ Element intrinsic stiffness and stress matrix generator.

[XQT K $ To assemble unconstrained system stiffness matrices.

[XQT AUS $ Subprocessor for arithmetic utility system.

ALPHA; CASE TITLE 1 $ To define case title.

I" SUPPORTED AT JOINT 2171 $

TABLE; NODAL TEMPERATURE 1 $ Temperature input.

CASE 1 $ LIQUID LEVEL THETA=30 DEGREES $

J=I,467; I. $ Hot region.
J=468,538; .75 $
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J=539,609; .5 $

J=610,680; .25 $
Jz681,4271; 0. $

[XQT INV $
RESET CON=I LRA=I2000 $

[XQT EQNF $
RESET SET--I $

[XQT SSOL $

[XQT AUS $
DEFINE D=STAT DISP $

DEFINE R--STAT REAC $

SLOB DISP=LTOG(D) $

SLOB REAC--LTOG (R) $

[XQT VPRT $
TPRINT STAT DISP $

TPRINT STAT REAC $

[XQT GSF $
RESET EMBED--I SET=I $

$
$
$
[XQT PSF $

RESET CROSS=0 $

E43; E33 $

Liquid level.
SPAR format matrix decomposition processor.

Constrain case=l, output data set block length.

Equivalent nodal force generator for thermal loads.

Static solution generator.

Subprocessor for arithmetic utility system.

To define static displacements.
To define static reactions.

Displacements in global cordinate system.

Reactions in global coordinate system.
Vector printer.

To print static displacements.

To print static reactions.

Stress data generator.

All stresses computed in the current GSF
execution will be embedded in the E-state,

for use in computing geometric stiffness

matrices, KS.

Stress table printer.

To print midsurface stresses.

[XQT KG $ System initial stress (geometric) stiffness matrix assembler.

[XQT AUS $ Subprocessor for arithmetic utility system.
KI800=SUM(K, 1800. KS) $ To redefine new K by shifting 1800.

[XQT INV $ SPAR format matrix decomposition processor.

RESET KzKI800 $ To replace K with KI800.

[XQT FIG $ Sparse matrix eigensolver.
RESET PROBzBUCK CON=I INIT=I NREQ=I K=KI800 SHIFT=I800. NDYN=I00$

[XQT DCU $ Data complex utility program.
TOC=I $ Table of content=l.

[XQT PLTA $ Plot specification generator.
SPEC=I $

STITLE" UNDEFORMED SHAPE $

ROTATE 20,1 5,2 5,3 $ To rotate 20, 5, 5 degrees respectively

$ with respect to x,y, and z-axes.

VIEW=2 $
SYM 3 $ To add mirror image with respect to xy-plane.

E43 I; E43 2; E33 I; E33 2 $

SPEC=2 $
STITLE" BUCKLED SHAPE-LIQUID LEVEL=30 DEGREES $

ROTATE 20,1 5,2 5,3 $

VIEW=2 $

SYM 3 $

E43 I; E43 2; E33 i; E33 2 $

SPEC=3 $
STITLE" DEFORMED SHAPE-LIQUID LEVEL=30 DEGREES $

ROTATE 20,1 5,2 5,3 $

VIEW=2 $

SYM 3 $

E43 I; E43 2; E33 i; E33 2 $
Production of graphical display.

To display undeformed shape.
[XQT PLTB $

DISP=UNDEF $

PLOT=I $

DISP=BUC $
DNORM=3.0 $

PLOT=2 $ $

DISP-STAT $

DNORM=6.0 $

PLOT=3 $

[XQT EXIT $

To display buckled shape.
To define displacement scale.

To display static deformation shape.

To define displacement scale.

To end the input program.
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